中文

Complete Usage Example

Momentum Strategy

Note: This strategy is provided only as an example for using the API interface, such as querying market data, placing orders, etc. The strategy itself has not been verified and does not constitute investment advice.

The basic idea of this strategy is that "assets with high returns over a past period will continue their original trend and may achieve high returns in the future." The stock pool used for stock selection consists of Nasdaq-100 index constituent stocks.

The specific implementation process is: run the strategy periodically, select several stocks with the highest gains during the period from the stock pool as target stocks for this rebalancing, buy and hold them, and close positions for previously held stocks that were not selected.

The code is as follows:

import datetime
import logging
import sys
import time

import pandas as pd

from tigeropen.common.consts import BarPeriod, SecurityType, Market, Currency
from tigeropen.common.util.contract_utils import stock_contract
from tigeropen.common.util.order_utils import limit_order
from tigeropen.quote.quote_client import QuoteClient
from tigeropen.tiger_open_config import get_client_config
from tigeropen.trade.trade_client import TradeClient

client_logger = logging.getLogger('client')
client_logger.setLevel(logging.WARNING)
client_logger.addHandler(logging.StreamHandler(sys.stdout))
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))

pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 100)
pd.set_option('display.width', 1000)

# Nasdaq-100 index constituent stocks. Up to 2021/12/20
UNIVERSE_NDX = ["AAPL", "ADBE", "ADI", "ADP", "ADSK", "AEP", "ALGN", "AMAT", "AMD", "AMGN", "AMZN", "ANSS", "ASML",
                "ATVI", "AVGO", "BIDU", "BIIB", "BKNG", "CDNS", "CDW", "CERN", "CHKP", "CHTR", "CMCSA", "COST", "CPRT",
                "CRWD", "CSCO", "CSX", "CTAS", "CTSH", "DLTR", "DOCU", "DXCM", "EA", "EBAY", "EXC", "FAST", "FB",
                "FISV", "FOX", "GILD", "GOOG", "HON", "IDXX", "ILMN", "INCY", "INTC", "INTU", "ISRG",
                "JD", "KDP", "KHC", "KLAC", "LRCX", "LULU", "MAR", "MCHP", "MDLZ", "MELI", "MNST", "MRNA", "MRVL",
                "MSFT", "MTCH", "MU", "NFLX", "NTES", "NVDA", "NXPI", "OKTA", "ORLY", "PAYX", "PCAR", "PDD", "PEP",
                "PTON", "PYPL", "QCOM", "REGN", "ROST", "SBUX", "SGEN", "SIRI", "SNPS", "SPLK", "SWKS", "TCOM", "TEAM",
                "TMUS", "TSLA", "TXN", "VRSK", "VRSN", "VRTX", "WBA", "WDAY", "XEL", "XLNX", "ZM"]

# Hang Seng Tech Index constituent stocks. Up to 2021/12/20
UNIVERSE_HSTECH = ["00241", "00268", "00285", "00522", "00700", "00772", "00780", "00909", "00981", "00992", "01024",
                   "01347", "01810", "01833", "02013", "02018", "02382", "02518", "03690", "03888", "06060", "06618",
                   "06690", "09618", "09626", "09698", "09888", "09961", "09988", "09999"]

# Number of stocks to hold
HOLDING_NUM = 5
# Maximum order check times
ORDERS_CHECK_MAX_TIMES = 10
# Number of symbols per request when fetching quotes
REQUEST_SIZE = 50
TARGET_QUANTITY = "target_quantity"
PRE_CLOSE = "pre_close"
LATEST_PRICE = "latest_price"
MARKET_CAPITAL = "market_capital"
SYMBOL = "symbol"
WEIGHT = "weight"
TIME = "time"
CLOSE = "close"
DATE = "date"
LOT_SIZE = "lot_size"

PRIVATE_KEY_PATH = "your private key path"
TIGER_ID = "your tiger id"
ACCOUNT = "your account"
client_config = get_client_config(private_key_path=PRIVATE_KEY_PATH, tiger_id=TIGER_ID, account=ACCOUNT)
quote_client = QuoteClient(client_config, logger=client_logger)
trade_client = TradeClient(client_config, logger=client_logger)


def request(symbols, method, **kwargs):
    """
    :param symbols:
    :param method:
    :param kwargs:
    :return:
    """
    symbols = list(symbols)
    result = pd.DataFrame()
    for i in range(0, len(symbols), REQUEST_SIZE):
        part = symbols[i:i + REQUEST_SIZE]
        quote = method(part, **kwargs)
        result = result.append(quote)
        # for rate limit
        time.sleep(0.5)
    return result


def get_quote(symbols):
    quote = request(symbols, quote_client.get_stock_briefs)
    return quote.set_index(SYMBOL)


def get_trade_meta(symbols):
    metas = request(symbols, quote_client.get_trade_metas)
    return metas.set_index(SYMBOL)


def get_history(symbols, total=200, batch_size=50) -> pd.DataFrame:
    """

    :param symbols:
    :param total:
    :param batch_size:
    :return:
                                               time      open     high       low   close     volume
    date                      symbol
    2021-03-05 00:00:00-05:00 AAPL    1614920400000  120.9800  121.935  117.5700  121.42  153766601
                              ADBE    1614920400000  444.8800  444.950  423.7101  440.83    4614971
                              ADI     1614920400000  149.0000  149.620  143.3900  148.88    4040153
                              ADP     1614920400000  171.8300  179.000  171.5003  178.26    2535893
                              ADSK    1614920400000  270.3300  270.330  255.0200  267.39    1835526
    ...                                         ...       ...      ...       ...     ...        ...
    2021-12-16 00:00:00-05:00 WBA     1639630800000   48.5035   50.150   48.5000   49.26    5551852
                              WDAY    1639630800000  277.3300  278.365  269.2600  272.23    1206784
                              XEL     1639630800000   68.5800   69.570   68.3100   68.95    3774564
                              XLNX    1639630800000  217.3700  218.080  198.5100  199.78    4299386
                              ZM      1639630800000  183.7900  185.720  177.0000  182.40    4224447
    """
    end = int(datetime.datetime.today().timestamp() * 1000)
    history = pd.DataFrame()
    for i in range(0, total, batch_size):
        if i + batch_size <= total:
            limit = batch_size
        else:
            limit = i + batch_size - total
        logger.info(f'query history, end_time:{end}, limit:{limit}')
        part = request(symbols, quote_client.get_bars, period=BarPeriod.DAY, end_time=end, limit=limit)
        part[DATE] = pd.to_datetime(part[TIME], unit='ms').dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
        end = min(part[TIME])
        history = history.append(part)
    history.set_index([DATE, SYMBOL], inplace=True)
    history.sort_index(inplace=True)
    return history


class Strategy:

    def __init__(self):
        self.market = Market.US
        self.currency = Currency.USD
        self.universe = UNIVERSE_NDX
        # self.market = Market.HK
        # self.currency = Currency.HKD
        # self.universe = UNIVERSE_HSTECH

        self.selected_symbols = list()
        # Time period for calculating momentum
        self.momentum_period = 30
        # Number of stocks to hold
        self.holding_num = HOLDING_NUM
        # Target overnight liquidation ratio after rebalancing. The higher the remaining liquidity ratio, the safer the risk control status. If the overnight remaining liquidity ratio is too low (e.g., less than 5%), there is a risk of being forced to liquidate.
        self.target_overnight_liquidation_ratio = 0.6

    def screen_stocks(self):
        """Screen stocks by price momentum
        Select several stocks with the highest gains during the period
        :return:
        """
        history = get_history(self.universe)
        close_data = history[CLOSE].unstack()
        momentum = close_data.pct_change(periods=self.momentum_period).iloc[-1]
        self.selected_symbols = momentum.nlargest(self.holding_num).index.values.tolist()
        return self.selected_symbols

    def rebalance_portfolio(self):
        """
        Rebalancing. First close positions for stocks that were not selected in this round but are in holdings, then buy selected stocks with equal share weight
        :return: 
        """
        position_list = trade_client.get_positions(sec_type=SecurityType.STK, market=self.market)
        positions = dict()
        for pos in position_list:
            positions[pos.contract.symbol] = pos.quantity

        need_close_symbols = set(positions.keys()) - set(self.selected_symbols)

        # For non-US stocks, need to get the lot size of stocks. The number of shares for each order can only be an integer multiple of the lot size
        lot_size = get_trade_meta(set(positions.keys()).union(self.selected_symbols))[LOT_SIZE]
        latest_price = get_quote(need_close_symbols)[LATEST_PRICE]
        orders = list()
        for symbol in need_close_symbols:
            contract = stock_contract(symbol, currency=self.currency.name)
            # Process the order quantity to be an integer multiple of the lot size
            quantity = int(positions[symbol] // lot_size[symbol] * lot_size[symbol])
            if quantity == 0:
                logger.warning(f'can not place order with this quantity, symbol:{symbol}, lot_size:{lot_size[symbol]},'
                               f'quantity:{positions[symbol]}')
                continue
            limit_price = latest_price[symbol]
            order = limit_order(account=ACCOUNT,
                                contract=contract,
                                action='SELL' if quantity > 0 else 'BUY',
                                quantity=abs(quantity),
                                limit_price=limit_price)
            orders.append(order)
        self.execute_orders(orders)

        # Global account
        # asset = trade_client.get_assets(account=ACCOUNT, segment=True)[0].segments['S']
        # target_overnight_liquidation = asset.equity_with_loan * self.target_overnight_liquidation_ratio
        # adjust_value = asset.sma - target_overnight_liquidation

        # Prime/Paper account
        asset = trade_client.get_prime_assets(account=ACCOUNT).segments['S']
        # Target overnight liquidation after rebalancing (overnight liquidation = equity with loan - overnight margin)
        # Overnight liquidation ratio = overnight liquidation / equity with loan
        target_overnight_liquidation = asset.equity_with_loan * self.target_overnight_liquidation_ratio
        # If liquidity is sufficient, the amount that needs to be purchased
        adjust_value = asset.overnight_liquidation - target_overnight_liquidation
        if adjust_value <= 0:
            logger.info('no enough liquidation')
            return
        quote = get_quote(self.selected_symbols)
        # Equal weight by number of shares held
        quote[WEIGHT] = 1 / len(self.selected_symbols)
        quote[TARGET_QUANTITY] = (adjust_value * quote[WEIGHT] / quote[LATEST_PRICE]).astype(int)

        orders = list()
        for symbol in quote.index:
            contract = stock_contract(symbol, self.currency.name)
            quantity = int(quote[TARGET_QUANTITY][symbol] // lot_size[symbol] * lot_size[symbol])
            # This check is mainly for non-US stocks. If the current order quantity is not an integer multiple of lot_size, it cannot be placed and can only be sold through the app for odd lots
            if quantity == 0:
                logger.warning(f'can not place order with this quantity, symbol:{symbol}, lot_size:{lot_size[symbol]},'
                               f'quantity:{quote[TARGET_QUANTITY][symbol]}')
                continue
            order = limit_order(account=ACCOUNT,
                                contract=contract,
                                action='BUY',
                                quantity=quantity,
                                limit_price=quote[LATEST_PRICE][symbol])
            order.time_in_force = 'GTC'  # 'DAY' valid for the day / 'GTC' good till canceled
            orders.append(order)
        self.execute_orders(orders)

    def execute_orders(self, orders):
        local_orders = dict()
        for order in orders:
            try:
                trade_client.place_order(order)
                logger.info(f'place order, {order.action} {order.contract.symbol} {order.quantity} {order.limit_price}')
                local_orders[order.id] = order
            except Exception as e:
                logger.error(f'place order error:{order}')
                logger.error(e, exc_info=True)

        time.sleep(20)
        i = 0
        while i <= ORDERS_CHECK_MAX_TIMES:
            logger.info(f'check {i} times')
            history_open_orders = trade_client.get_open_orders(account=ACCOUNT, sec_type=SecurityType.STK,
                                                               market=self.market,
                                                               start_time=self.get_time_from_now(
                                                                   datetime.timedelta(days=1)),
                                                               end_time=self.get_time_from_now())
            if not history_open_orders:
                break

            # After checking a certain number of times, if still not filled, modify the order once, changing the limit price to the latest price
            if i == ORDERS_CHECK_MAX_TIMES // 2:
                for open_order in history_open_orders:
                    latest_price = get_quote([open_order.contract.symbol])[LATEST_PRICE][open_order.contract.symbol]
                    try:
                        trade_client.modify_order(open_order, limit_price=latest_price)
                        logger.info(f'modify order, id:{open_order.id}, symbol:{open_order.contract.symbol},'
                                    f' old_price:{open_order.limit_price}, new_price:{latest_price}')
                    except Exception as e:
                        logger.error(f'modify order error:{open_order.id}')
                        logger.error(e)
            # If the maximum number of checks is reached and still not filled, cancel the orders
            if i >= ORDERS_CHECK_MAX_TIMES:
                for order in history_open_orders:
                    logger.info(f'the order was not filled, now cancel it: {order}')
                    try:
                        trade_client.cancel_order(ACCOUNT, id=order.id)
                    except Exception as e:
                        logger.error(f'cancel order error: {order}')
                        logger.error(e, exc_info=True)
            i += 1
            time.sleep(10)

        # Print filled order information
        filled_orders = trade_client.get_filled_orders(account=ACCOUNT,
                                                       sec_type=SecurityType.STK,
                                                       market=self.market,
                                                       start_time=self.get_time_from_now(datetime.timedelta(days=1)),
                                                       end_time=self.get_time_from_now())
        order_infos = [(str(order.id) + ':' + order.contract.symbol + ':' + order.action + ':' + str(order.filled)
                        + ':' + str(order.avg_fill_price)) for order in filled_orders]
        logger.info(f'recently filled orders:{order_infos}')

        # Print unfilled order information
        unfilled_order_ids = set(local_orders.keys()) - set(order.id for order in filled_orders)
        for order_id in unfilled_order_ids:
            order = trade_client.get_order(ACCOUNT, id=order_id)
            logger.info(f'order was cancelled, id:{order.id}, status:{order.status}, reason:{order.reason}')

    @staticmethod
    def get_time_from_now(delta=None):
        if not delta:
            return int(datetime.datetime.now().timestamp()) * 1000
        return int((datetime.datetime.now() - delta).timestamp()) * 1000

    def run(self):
        perms = quote_client.grab_quote_permission()
        logger.info(perms)
        self.screen_stocks()
        self.rebalance_portfolio()


if __name__ == '__main__':
    strategy = Strategy()
    strategy.run()